Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.850
Filtrar
1.
J Virol ; 98(4): e0201523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451083

RESUMO

Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections but the precise mechanisms are not fully defined. Nucleosomes are dynamic: they slide, breathe, assemble, and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent, whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X, and macroH2A were enhanced in infected cells, whereas those of H2A.B were uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, as well as ectopic and endogenous H2B were assembled into HSV-1 chromatin evenly throughout the genome but canonical H2A was relatively depleted whereas H2A.B was enriched, particularly in the most dynamic viral chromatin. When viral transcription and DNA replication were restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. IMPORTANCE: Herpes simplex virus 1 (HSV-1) transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed epigenetic mechanisms of regulation of HSV-1 transcription have not been fully characterized and may differ from those regulating cellular transcription. Whereas lytic HSV-1 chromatin is unusually dynamic, latent silenced HSV-1 chromatin is not. The mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment of the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding of its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.


Assuntos
Herpesvirus Humano 1 , Histonas , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Herpesvirus Humano 1/fisiologia , Nucleossomos , Epigênese Genética
2.
mBio ; 15(4): e0037324, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470056

RESUMO

The STimulator of INterferon Genes (STING) constitutes a major DNA-sensing pathway that restricts HSV-1 infection in different models by activating type I interferon and pro-inflammatory responses. To counteract STING, HSV-1 has evolved numerous strategies including mechanisms to interfere with its oligomerization, post-translational modifications, and downstream signaling. Previously, we demonstrated that STING is packaged in extracellular vesicles (EVs) produced from HSV-1-infected cells. These EVs activated antiviral responses in uninfected recipient cells and suppressed a subsequent HSV-1 infection in a STING-dependent manner. Here, we provide information on the packaging of STING in EVs and its exocytosis. We found that STING exocytosis did not occur in CD63 knockdown cells supporting that STING follows the CD63 exocytosis pathway. Consistently, we found that STING co-localized with CD63 in cytoplasmic globular structures and exosomal STING and CD63 co-fractionated. Both golgicide A and brefeldin A prevented STING exocytosis during HSV-1 infection suggesting that STING trafficking through the Golgi is required. A STING ligand was insufficient for STING exocytosis, and downstream signaling through TBK1 was not required. However, STING palmitoylation and tethering to the ER by STIM1 were required for STING exocytosis. Finally, we found that HSV-1 replication/late gene expression triggered CD63 exocytosis that was required for STING exocytosis. Surprisingly, HSV-2 strain G did not trigger CD63 or STING exocytosis as opposed to VZV and HCMV. Also, EVs from HSV-1(F)- and HSV-2(G)-infected cells displayed differences in their ability to restrict these viruses. Overall, STING exocytosis is induced by certain viruses and shapes the microenvironment of infection.IMPORTANCEExtracellular vesicles (EVs) are released by all types of cells as they constitute a major mechanism of intercellular communication. The packaging of specific cargo in EVs and the pathway of exocytosis are not fully understood. STING is a sensor of a broad spectrum of pathogens and a key component of innate immunity. STING exocytosis during HSV-1 infection has been an intriguing observation, raising questions of whether this is a virus-induced process, the purpose it serves, and whether it is observed after infection with other viruses. Here, we have provided insights into the pathway of STING exocytosis and determined factors involved. STING exocytosis is a virus-induced process and not a response of the host to the infection. Besides HSV-1, other herpes viruses triggered STING exocytosis, but HSV-2(G) did not. HSV-1 EVs displayed different restriction capabilities compared with HSV-2(G) EVs. Overall, STING exocytosis is triggered by viruses to shape the microenvironment of infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Exocitose , Herpesvirus Humano 1/fisiologia , Imunidade Inata , Proteínas de Membrana/metabolismo
3.
Sci Rep ; 14(1): 6859, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514671

RESUMO

Reactivation of latent herpes simplex type 1 results in virus returning to the cornea leading to recurrent herpetic stromal keratitis (rHSK). We compare two competing models to reactivate viruses from latency, UV-B irradiation and cyclophosphamide (CP). Results revealed that while both result in corneal recrudescence, only UV-B irradiation results in rHSK. To better understand the dynamics of reactivation, we analyzed corneas for both the presence of infectious viruses and the dynamics of exposure to multiple reactivations using UV-B. We noted that multiple reactivations result in progressively worse corneal disease. We also noted that expression of IFNα and STING, surragate markers for the presence of virus, are induced by the presence of reactivated virus. Studies to determine the importance of STING to the development of HSK revealed that in the absence of STING, mice do not develop significant HSK and the magnitude of the infiltrate of CD45+ cells in these corneas is significantly reduced. The resulting paucity of CD45+CD11b+GR-1+F4/80-neutrophils, and to a lesser extent CD45+CD11b+GR-1-F4/80+ macrophages in B6-STING KO mice following reactivation is likely the underlying cause for lack of rHSK as has been noted by ourselves and others. These results underscore the critical importance of STING's role in developing rHSK.


Assuntos
Doenças da Córnea , Herpes Simples , Herpesvirus Humano 1 , Ceratite Herpética , Camundongos , Animais , Herpesvirus Humano 1/fisiologia , Córnea/metabolismo , Doenças da Córnea/etiologia
4.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471041

RESUMO

Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Superinfecção , Humanos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Regulação para Baixo , Herpesvirus Humano 1/fisiologia , Queratinócitos , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética
5.
mBio ; 15(4): e0327823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411116

RESUMO

The fate of herpesvirus genomes following entry into different cell types is thought to regulate the outcome of infection. For the Herpes simplex virus 1 (HSV-1), latent infection of neurons is characterized by association with repressive heterochromatin marked with Polycomb silencing-associated lysine 27 methylation on histone H3 (H3K27me). However, whether H3K27 methylation plays a role in repressing lytic gene expression in non-neuronal cells is unclear. To address this gap in knowledge, and with consideration that the fate of the viral genome and outcome of HSV-1 infection could be heterogeneous, we developed an assay to quantify the abundance of histone modifications within single viral genome foci of infected fibroblasts. Using this approach, combined with bulk epigenetic techniques, we were unable to detect any role for H3K27me3 during HSV-1 lytic infection of fibroblasts. By contrast, we could detect the lesser studied H3K27me2 on a subpopulation of viral genomes, which was consistent with a role for H3K27 demethylases in promoting lytic gene expression. In addition, viral genomes co-localized with the H3K27me2 reader protein PHF20L1, and this association was enhanced by inhibition of the H3K27 demethylases UTX and JMJD3. Notably, targeting of H3K27me2 to viral genomes was enhanced following infection with a transcriptionally defective virus in the absence of Promyelocytic leukemia nuclear bodies. Collectively, these studies implicate a role for H3K27me2 in fibroblast-associated HSV genome silencing in a manner dependent on genome sub-nuclear localization and transcriptional activity. IMPORTANCE: Investigating the potential mechanisms of gene silencing for DNA viruses in different cell types is important to understand the differential outcomes of infection, particularly for viruses like herpesviruses that can undergo distinct types of infection in different cell types. In addition, investigating chromatin association with viral genomes informs on the mechanisms of epigenetic regulation of DNA processes. However, there is a growing appreciation for heterogeneity in the outcome of infection at the single cell, and even single viral genome, level. Here we describe a novel assay for quantifying viral genome foci with chromatin proteins and show that a portion of genomes are targeted for silencing by H3K27me2 and associate with the reader protein PHF20L1. This study raises important questions regarding the mechanism of H3K27me2-specific targeting to viral genomes, the contribution of epigenetic heterogeneity to herpesvirus infection, and the role of PHF20L1 in regulating the outcome of DNA virus infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Fibroblastos , Herpesvirus Humano 1/fisiologia
6.
mBio ; 15(3): e0347923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349188

RESUMO

Productive replication of herpes simplex virus (HSV) relies upon a well-ordered transcriptional cascade flowing from immediate-early (IE) to early (E) to late (L) gene products. While several virus-encoded transcriptional activators are involved in this process, IE and E gene promoters also contain multiple binding sites for the ubiquitously expressed cellular transcription factor Sp1. Sp1 has been previously implicated in activating HSV-1 gene transcription downstream of these sites, but why Sp1-binding sites are maintained in the promoters of genes activated by virus-encoded activators remains unclear. We hypothesized that Sp1 enables continued HSV-1 transcription and replication when viral transactivators are limited. We used a depletion-based approach in human foreskin fibroblasts to investigate the specific contribution of Sp1 to the initiation and progression of the HSV-1 lytic gene cascade. We found that Sp1 increased viral transcript levels, protein expression, and replication following infection with VP16- or ICP0-deficient viruses but had little to no effect on rescued viruses or during wild-type (WT) HSV-1 infection. Moreover, Sp1 promoted WT virus transcription and replication following interferon treatment of fibroblasts and thus may contribute to viral immune evasion. Interestingly, we observed reduced expression of Sp1 and Sp1-family transcription factors in differentiated sensory neurons compared to undifferentiated cells, suggesting that reduced Sp1 levels may also contribute to HSV-1 latent infection. Overall, these findings indicate that Sp1 can promote HSV-1 gene expression in the absence of key viral transactivators; thus, HSV-1 may use Sp1 to maintain its gene expression and replication under adverse conditions.IMPORTANCEHerpes simplex virus (HSV) is a common human pathogen that actively replicates in the epithelia but can persist for the lifetime of the infected host via a stable, latent infection in neurons. A key feature of the HSV replication cycle is a complex transcriptional program in which virus and host-cell factors coordinate to regulate expression of the viral gene products necessary for continued viral replication. Multiple binding sites for the cellular transcription factor Sp1 are located in the promoters of HSV-1 genes, but how Sp1 binding contributes to transcription and replication of wild-type virus is not fully understood. In this study, we identified a specific role for Sp1 in maintaining HSV-1 gene transcription under adverse conditions, as when virus-encoded transcriptional activators were absent or limited. Preservation of Sp1-binding sites in HSV-1 gene promoters may thus benefit the virus as it navigates diverse cell types and host-cell conditions during infection.


Assuntos
Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Infecção Latente , Humanos , Herpesvirus Humano 1/fisiologia , Transativadores/genética , Proteínas Imediatamente Precoces/genética , Fatores de Transcrição/metabolismo , Replicação Viral , Expressão Gênica , Regulação Viral da Expressão Gênica
7.
J Virol ; 98(3): e0201023, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376148

RESUMO

Herpes simplex virus-1 (HSV-1) infections are among the most frequent serious viral eye infections in the U.S. and are a major cause of viral-induced blindness. HSV-1 infection is known to induce T cell activation, proliferation, and differentiation that play crucial roles in the development of virus-induced inflammatory lesions, leading to eye disease and causing chronic corneal damage. CD80 is a co-stimulatory molecule and plays a leading role in T cell differentiation. Previous efforts to limit lesion severity by controlling inflammation at the cellular level led us to ask whether mice knocked out for CD80 would show attenuated virus replication following reactivation. By evaluating the effects of CD80 activity on primary and latent infection, we found that in the absence of CD80, virus replication in the eyes and virus reactivation in latent trigeminal ganglia were both significantly reduced. However, latency in latently infected CD80-/- mice did not differ significantly from that in wild-type (WT) control mice. Reduced virus replication in the eyes of CD80-/- mice correlated with significantly expanded CD11c gene expression as compared to WT mice. Taken together, our results indicate that suppression of CD80 could offer significant beneficial therapeutic effects in the treatment of Herpes Stromal Keratitis (HSK).IMPORTANCEOf the many problems associated with recurrent ocular infection, reducing virus reactivation should be a major goal of controlling ocular herpes simplex virus-1 (HSV-1) infection. In this study, we have shown that the absence of CD80 reduces HSV-1 reactivation, which marks the establishment of a previously undescribed mechanism underlying viral immune evasion that could be exploited to better manage HSV infection.


Assuntos
Infecções Oculares , Herpes Simples , Herpesvirus Humano 1 , Animais , Camundongos , Antígeno B7-1/genética , Olho , Infecções Oculares/metabolismo , Infecções Oculares/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Gânglio Trigeminal , Ativação Viral , Latência Viral
8.
Sci Adv ; 10(9): eadk9185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416818

RESUMO

Single-cell analyses of viral infections reveal heterogeneity that is not detected by traditional population-level studies. This study applies drop-based microfluidics to investigate the dynamics of herpes simplex virus type 1 (HSV-1) infection of neurons at the single-cell level. We used micrometer-scale Matrigel beads, termed microgels, to culture individual murine superior cervical ganglia (SCG) neurons or epithelial cells. Microgel-cultured cells are encapsulated in individual media-in-oil droplets with a dual-fluorescent reporter HSV-1, enabling real-time observation of viral gene expression and replication. Infection within drops revealed that the kinetics of initial viral gene expression and replication were dependent on the inoculating dose. Notably, increasing inoculating doses led to earlier onset of viral gene expression and more frequent productive viral replication. These observations provide crucial insights into the complexity of HSV-1 infection in neurons and emphasize the importance of studying single-cell outcomes of viral infection. These techniques for cell culture and infection in drops provide a foundation for future virology and neurobiology investigations.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Camundongos , Animais , Herpesvirus Humano 1/fisiologia , Microfluídica , Replicação Viral , Neurônios
9.
Sci Rep ; 14(1): 4096, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374240

RESUMO

Corneal HSV-1 infections are a leading cause of infectious blindness globally by triggering tissue damage due to the intense inflammation. HSV-1 infections are treated mainly with antiviral drugs that clear the infections but are inefficient as prophylactics. The body produces innate cationic host defence peptides (cHDP), such as the cathelicidin LL37. Various epithelia, including the corneal epithelium, express LL37. cHDPs can cause disintegration of pathogen membranes, stimulate chemokine production, and attract immune cells. Here, we selected GF17, a peptide containing the LL37 fragment with bioactivity but with minimal cytotoxicity, and added two cell-penetrating amino acids to enhance its activity. The resulting GF19 was relatively cell-friendly, inducing only partial activation of antigen presenting immune cells in vitro. We showed that HSV-1 spreads by tunneling nanotubes in cultured human corneal epithelial cells. GF19 given before infection was able to block infection, most likely by blocking viral entry. When cells were sequentially  exposed to viruses and GF19,  the infection was attenuated but not arrested, supporting the contention that the GF19 mode of action was to block viral entry. Encapsulation into silica nanoparticles allowed a more sustained release of GF19, enhancing its activity. GF19 is most likely suitable as a prevention rather than a virucidal treatment.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Sorogrupo , Córnea , Herpesvirus Humano 1/fisiologia
10.
J Virol ; 98(2): e0178523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193690

RESUMO

The human pathogen herpes simplex virus 1 (HSV-1) produces a lifelong infection in the majority of the world's population. While the generalities of alpha herpesvirus assembly and egress pathways are known, the precise molecular and spatiotemporal details remain unclear. In order to study this aspect of HSV-1 infection, we engineered a recombinant HSV-1 strain expressing a pH-sensitive reporter, gM-pHluorin. Using a variety of fluorescent microscopy modalities, we can detect individual virus particles undergoing intracellular transport and exocytosis at the plasma membrane. We show that particles exit from epithelial cells individually, not bulk release of many particles at once, as has been reported for other viruses. In multiple cell types, HSV-1 particles accumulate over time at the cell periphery and cell-cell contacts. We show that this accumulation effect is the result of individual particles undergoing exocytosis at preferential sites and that these egress sites can contribute to cell-cell spread. We also show that the viral membrane proteins gE, gI, and US9, which have important functions in intracellular transport in neurons, are not required for preferential egress and clustering in non-neuronal cells. Importantly, by comparing HSV-1 to a related alpha herpesvirus, pseudorabies virus, we show that this preferential exocytosis and clustering effect are cell type dependent, not virus dependent. This preferential egress and clustering appear to be the result of the arrangement of the microtubule cytoskeleton, as virus particles co-accumulate at the same cell protrusions as an exogenous plus end-directed kinesin motor.IMPORTANCEAlpha herpesviruses produce lifelong infections in their human and animal hosts. The majority of people in the world are infected with herpes simplex virus 1 (HSV-1), which typically causes recurrent oral or genital lesions. However, HSV-1 can also spread to the central nervous system, causing severe encephalitis, and might also contribute to the development of neurodegenerative diseases. Many of the steps of how these viruses infect and replicate inside host cells are known in depth, but the final step, exiting from the infected cell, is not fully understood. In this study, we engineered a novel variant of HSV-1 that allows us to visualize how individual virus particles exit from infected cells. With this imaging assay, we investigated preferential egress site formation in certain cell types and their contribution to the cell-cell spread of HSV-1.


Assuntos
Exocitose , Herpes Simples , Herpesvirus Humano 1 , Liberação de Vírus , Animais , Humanos , Transporte Biológico , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Neurônios
11.
J Virol ; 98(2): e0176423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193709

RESUMO

Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and periodically reactivates to permit transmission, which can result in clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection, and therefore, HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. The activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required to transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during the HSV latent infection of neurons to promote reactivation but not during the initial JNK-dependent Phase I. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.IMPORTANCEThe molecular mechanisms that regulate the reactivation of herpes simplex virus-1 (HSV-1) from latent infection are unknown. The host transcription and pioneer factor c-Jun is the main target of the JNK cell stress pathway that is known to be important in exit of HSV from latency. Surprisingly, we found that c-Jun does not act with JNK during exit from latency but instead promotes the transition to full reactivation. Moreover, c-Jun and enhanced neuronal stress during initial neuronal infection promoted a more reactivation-competent form of HSV-1 latency. c-Jun, therefore, functions at multiple stages during HSV-1 latent infection of neurons to promote reactivation. Importantly, this study contributes to a growing body of evidence that de novo HSV-1 infection conditions can modulate latent infection and impact future reactivation events, raising important questions on the clinical impact of stress during initial HSV-1 acquisition on future reactivation events and consequences.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Infecção Latente , Transdução de Sinais , Humanos , Herpes Simples/metabolismo , Herpes Simples/virologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/fisiologia , Ativação Viral , Latência Viral , Animais , Camundongos
12.
mBio ; 15(2): e0330823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38275838

RESUMO

The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.


Assuntos
Doenças Transmissíveis , Vesículas Extracelulares , Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiologia , Galectina 1/metabolismo , Vesículas Extracelulares/metabolismo , Crescimento Neuronal , Glicoproteínas/metabolismo
13.
J Control Release ; 365: 208-218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981051

RESUMO

Herpes simplex keratitis (HSK) is a common blinding corneal disease caused by herpes simplex virus type 1 (HSV-1) infection. Antiviral drugs and corticosteroids haven't shown adequate therapeutic efficacy. During the early stage of HSV-1 infection, macrophages serve as the first line of defense. In particular, CD169+ macrophages play an important role in phagocytosis and antigen presentation. Therefore, we constructed GM-gD-lip, a ganglioside GM1 liposome vaccine encapsulating HSV-1 glycoprotein D and targeting CD169+ macrophages. After subconjunctival injection of the vaccine, we evaluated the survival rate and ocular surface lesions of the HSK mice, as well as the virus levels in the tear fluid, corneas, and trigeminal ganglia. We discovered that GM-gD-lip reduced HSV-1 viral load and alleviated the clinical severity of HSK. The GM-gD-lip also increased the number of corneal infiltrating macrophages, especially CD169+ macrophages, and polarized them toward M1. Furthermore, the number of dendritic cells (DCs) and CD8+ T cells in the ocular draining lymph nodes was significantly increased. These findings demonstrated that GM-gD-lip polarized CD169+ macrophages toward M1 to eliminate the virus while cross-presenting antigens to CD8+ T cells via DCs to activate adaptive immunity, ultimately attenuating the severity of HSK. The use of GM-gD-lip as an immunotherapeutic method for the treatment of HSK has significant implications.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Ceratite Herpética , Vacinas , Animais , Camundongos , Lipossomos , Linfócitos T CD8-Positivos , Gangliosídeos , Ceratite Herpética/tratamento farmacológico , Herpesvirus Humano 1/fisiologia , Córnea , Macrófagos , Glicoproteínas
14.
PLoS Pathog ; 19(12): e1011849, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055760

RESUMO

Herpes simplex virus 1 (HSV-1) is a neurotropic virus that remains latent in neuronal cell bodies but reactivates throughout an individual's life, causing severe adverse reactions, such as herpes simplex encephalitis (HSE). Recently, it has also been implicated in the etiology of Alzheimer's disease (AD). The absence of an effective vaccine and the emergence of numerous drug-resistant variants have called for the development of new antiviral agents that can tackle HSV-1 infection. Host-targeting antivirals (HTAs) have recently emerged as promising antiviral compounds that act on host-cell factors essential for viral replication. Here we show that a new class of HTAs targeting peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes catalyzing protein citrullination, exhibits a marked inhibitory activity against HSV-1. Furthermore, we show that HSV-1 infection leads to enhanced protein citrullination through transcriptional activation of three PAD isoforms: PAD2, PAD3, and PAD4. Interestingly, PAD3-depletion by specific drugs or siRNAs dramatically inhibits HSV-1 replication. Finally, an analysis of the citrullinome reveals significant changes in the deimination levels of both cellular and viral proteins, with the interferon (IFN)-inducible proteins IFIT1 and IFIT2 being among the most heavily deiminated ones. As genetic depletion of IFIT1 and IFIT2 strongly enhances HSV-1 growth, we propose that viral-induced citrullination of IFIT1 and 2 is a highly efficient HSV-1 evasion mechanism from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection and demonstrate that PAD inhibitors efficiently suppress HSV-1 infection in vitro, which may provide the rationale for their repurposing as HSV-1 antiviral drugs.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiologia , Citrulinação , Fatores de Restrição Antivirais , Proteínas Virais/metabolismo , Replicação Viral , Antivirais/farmacologia , Antivirais/metabolismo
15.
Viruses ; 15(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140581

RESUMO

The herpes simplex virus (HSV) is a double-stranded DNA human virus that causes persistent infections with recurrent outbreaks. HSV exists in two forms: HSV-1, responsible for oral herpes, and HSV-2, primarily causing genital herpes. Both types can lead to significant complications, including neurological issues. Conventional treatment, involving acyclovir and its derivatives, faces challenges due to drug resistance. This underscores the imperative for continual research and development of new drugs, with a particular emphasis on exploring the potential of natural antivirals. Flavonoids have demonstrated promise in combating various viruses, including those within the herpesvirus family. This review, delving into recent studies, reveals the intricate mechanisms by which flavonoids decode their antiviral capabilities against HSV. By disrupting key stages of the viral life cycle, such as attachment to host cells, entry, DNA replication, latency, and reactivation, flavonoids emerge as formidable contenders in the ongoing battle against HSV infections.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/fisiologia , Estágios do Ciclo de Vida
16.
Viruses ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38005822

RESUMO

Herpes Simplex Virus type 1 (HSV-1) infects humans and causes a variety of clinical manifestations. Many HSV-1 genomes have been sequenced with high-throughput sequencing technologies and the annotation of these genome sequences heavily relies on the known genes in reference strains. Consequently, the accuracy of reference strain annotation is critical for future research and treatment of HSV-1 infection. In this study, we analyzed RNA-Seq data of HSV-1 from NCBI databases and discovered a novel intron in the overlapping coding sequence (CDS) of US10 and US11, and the 3' UTR of US12 in strain 17, a commonly used HSV-1 reference strain. To comprehensively understand the shared US10/US11/US12 intron structure, we used US11 as a representative and surveyed all US11 gene sequences from the NCBI nt/nr database. A total of 193 high-quality US11 sequences were obtained, of which 186 sequences have a domain of uninterrupted tandemly repeated RXP (Arg-X-Pro) in the C-terminus half of the protein. In total, 97 of the 186 sequences encode US11 protein with the same length of the mature US11 in strain 17:26 of them have the same structure of US11 and can be spliced as in strain 17; 71 of them have transcripts that are the same as mature US11 mRNA in strain 17. In total, 76 US11 gene sequences have either canonical or known noncanonical intron border sequences and may be spliced like strain 17 and obtain mature US11 CDS with the same length. If not spliced, they will have extra RXP repeats. A tandemly repeated RXP domain was proposed to be essential for US11 to bind with RNA and other host factors. US10 protein sequences from the same strains have also been studied. The results of this study show that even a frequently used reference organism may have errors in widely used databases. This study provides accurate annotation of the US10, US11, and US12 gene structure, which will build a more solid foundation to study expression regulation of the function of these genes.


Assuntos
Herpesvirus Humano 1 , Íntrons , Proteínas Virais , Humanos , Sequência de Bases , Herpes Simples , Herpesvirus Humano 1/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Viruses ; 15(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005932

RESUMO

Human herpes simplex virus (HSV), a double-stranded DNA virus belonging to the Herpesviridae family and alpha herpesvirus subfamily, is one of the most epidemic pathogens in the population. Cell-to-cell spread is a special intercellular transmission mechanism of HSV that indicates the virulence of this virus. Through numerous studies on mutant HSV strains, many viral and host proteins involved in this process have been identified; however, the mechanisms remain poorly understood. Here, we evaluated the effect of the membrane protein genes US7 and UL56 on cell-to-cell spread in vitro between two HSV-1 (HB94 and HN19) strains using a plaque assay, syncytium formation assay, and the CRISPR/Cas9 technique. US7 knockout resulted in the inhibition of viral cell-to-cell spread; additionally, glycoprotein I (US7) of the HB94 strain was found to promote cell-to-cell spread compared to that of the HN19 strain. UL56 knockout did not affect plaque size and syncytium formation; however, the gene product of UL56 from the HN19 strain inhibited plaque formation and membrane infusion. This study presents preliminary evidence of the functions of US7 and UL56 in the cell-to-cell spread of HSV-1, which will provide important clues to reveal the mechanisms of cell-to-cell spread, and contributes to the clinical drugs development.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Glicoproteínas
18.
J Virol ; 97(10): e0130523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37823644

RESUMO

IMPORTANCE: A correlation exists between stress and increased episodes of human alpha-herpes virus 1 reactivation from latency. Stress increases corticosteroid levels; consequently, the glucocorticoid receptor (GR) is activated. Recent studies concluded that a GR agonist, but not an antagonist, accelerates productive infection and reactivation from latency. Furthermore, GR and certain stress-induced transcription factors cooperatively transactivate promoters that drive the expression of infected cell protein 0 (ICP0), ICP4, and VP16. This study revealed female mice expressing a GR containing a serine to alanine mutation at position 229 (GRS229A) shed significantly lower levels of infectious virus during explant-induced reactivation compared to male GRS229A or wild-type parental C57BL/6 mice. Furthermore, female GRS229A mice contained fewer VP16 + TG neurons compared to male GRS229A mice or wild-type mice during the early stages of explant-induced reactivation from latency. Collectively, these studies revealed that GR transcriptional activity has female-specific effects, whereas male mice can compensate for the loss of GR transcriptional activation.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Receptores de Glucocorticoides , Ativação Viral , Animais , Feminino , Masculino , Camundongos , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Gânglio Trigeminal , Ubiquitina-Proteína Ligases/metabolismo , Ativação Viral/genética , Latência Viral/genética
19.
Antiviral Res ; 219: 105733, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858763

RESUMO

Herpes is a contagious life-long infection with persistently high incidence and prevalence, causing significant disease worldwide. Current therapies have efficacy against active HSV infections but no impact on the latent viral reservoir in neurons. Thus, despite treatment, disease recurs from latency and the infectious potential remains unaffected within patients. Here, efficacy of the helicase-primase inhibitor (HPI) IM-250 against chronic neuronal HSV infections utilizing two classic herpes in vivo latency/reactivation animal models (intravaginal guinea pig HSV-2 infection model and ocular mouse HSV-1 infection model) is presented. Intermittent therapy of infected animals with 4-7 cycles of IM-250 during latency silences subsequent recurrences analyzed up to 6 months. In contrast to common experience, our studies show that the latent reservoir is indeed accessible to antiviral therapy altering the latent viral reservoir such that reactivation frequency can be reduced significantly by prior IM-250 treatment. We provide evidence that antiviral treatment during HSV latency can reduce future reactivation from the latent reservoir, supporting a conceptual shift in the antiviral field, and reframing what is achievable with respect to therapy of latent neuronal HSV infections.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Animais , Camundongos , Cobaias , DNA Primase , Latência Viral/fisiologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/fisiologia , Modelos Animais de Doenças , Antivirais/farmacologia , Antivirais/uso terapêutico
20.
Nature ; 623(7985): 157-166, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853118

RESUMO

Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioblastoma/imunologia , Glioblastoma/patologia , Nestina/genética , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/fisiologia , Reprodutibilidade dos Testes , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral/imunologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...